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ABSTRACT 

Power law inflationary universe model induced by a scaler field with an 
exponential potential is studied. A dissipation term due to particle creation 
ie introduced in the inflaton’s classical equation of motion. It is shown that 
the power index of the in5ation increases prominently with an adequate 
vlecoeity. Consequently, even in theories with a rather steep exponential 
potential such ae come supergravity or superstrlng models, it turna out that 
a “realistic” power law in5ation (the power index: p > 10) is possible. 
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The solution of the long-standing cosmological problems such es hori- 

son and flatness problems is now generally attributed to intlation, or an 

exponential expansion of the cosmic scale in the early universe[l]. Such 

exponential inflation may realize if a scaler field with a sufficiently 5at po- 

tential exists and its energy contributes dominantly to the energy density 

of the early universe[2,3]. Unfortunately, however, no scalar field with such 

a potential is yet known to exist naturally in high energy physics theories 

such es superstring theory which are expected to describe the early history 

of the universe[li]. 

The exponential infiation is, however, by no means a necessary condition 

in order to resolve above-mentioned cosmological problems. Models which 

may solve these problems without resorting to the exponential expansion 

are also known ss generalized in5ation models[5,6,7]. They are based on the 

fact that any type of accelerated expansion may solve horizon and flatness 

problems in principle[g]. 

Among various generalized in5ationary models one with particular in- 

terest of us is the power law infiation model[5,6], in which the Friedmann- 

Robertson-Walker(FRW) scale factor a(t) grows as 

a(t) = a#, p > 1. (1) 

Such power law expansion may realize if a scalar field 4 with an exponen- 

tial potential V[tj] = VoeeX, dominates the energy density of the universe. 

Indeed there is a set of exact solution in the spatially flat FRW space time 

in which a(t) shows power law behavior as seen below. The Einstein equa- 
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tions and the classical equation of motion of the scalar field 4 are written 

($)I z i-I* = ;(A# + Voe-W) - ;, (2) 
- 
4 + 3Hd - XVoeCX+ = 0, (3) 

where V, and X are constants and 8nG is taken unity. Then these equations 

posses the following exact solution if k = 0[8,9]. 

4% = &o+~ln(~), 

a(t) = a# 
2 

P=p 

(4) 

(51 

where 4.(t) denotes a classical solution and se, to and &e are integration 

constants. Thus power law inflation may take place if X < &. In fact it 

has been shown by Halliwell[S] that the above solution is an attractor for 

all the k 5 0 and some k > 0 initial conditions in the FRW universes. 

Scalar fields with an effectively exponential potential appear naturally 

in supergravity theories and superstring models[l0,11,12]. However, their 

potential is usually so steep that the power index of the scale factor can- 

not be much larger than unity, which makes it difficult to construct an 

acceptable inflationary universe model. For example, we find X = fi and 

fi for two scalar fields in N = 2, 6-dimensional supergravity model with 

Sr-compactification [ll], and X = fi and 2 for two scalar fields in N = 1, 

lO-dimensional supergravity model with gaugino condensation 1121. What 

we intend to do here is to m-consider the dynamics of the classical field 
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&(t) in the power law infiationary stage to show the power index p in- 

cresses sufficiently for in5ation to occur with an adequate viscosity. 

In the exponential inflation, time variation of the inflaton 5eld ‘p is 

generally negligibly small during the inflationary stage so that the dynamics 

of the field is well described by an equation of motion of the form[3] 

3H@ + V’[$D] = 0. (6) 

While in the power law inflation, the in5aton c& rolls down the exponential 

potential rather rapidly even in the infiationary stage. Indeed under the 

exact solution of (4) the ratio of the potential energy to kinetic energy takes 

a finite value determined by the power p, as, 

WI -=3p-1. 
#I2 

Thus in the power law inflation the time variation of the classical field 4, 

is not negligible. 

This implies that the couplings of some fields with 4 become time depen- 

dent through&(t) and those particles are produced due to &‘s variation[l3]. 

Then the classical field c&(t) loses its energy through these dissipation pro 

cesses. In order to take into account this energy dissipation, we have to 

introduce a viscosity term in the inffaton’s equation of motion[l4,15,16]. 

That is, eq. (3) should be modified to 

f$ + 3Hq5 - XV0e-‘+ + C,I$ = 0, (8) 

where C, is phenomenologically-introduced viscosity coefficient which gen- 

erally depends on (6., &, and coupling strength between 4 and other fields. 
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Here let us investigate the effect of introducing a viscosity term as in 

(8) on the dynamics of the inflation. To do this, since we, unfortunately, 

have yet no method to calculate C. properly, we assume that time scale 

of energy dissipation is proportional to the inflaton’s “mass”. That is, we 

assume C. takes the following form, 

C, E fMc E fV”[c#*, (9) 

where a constant f is treated 86 a free parameter. We further assume, 

for simplicity, that the in5aton energy released through the viscosity term 

is converted into that of radiation. Then energy density of 4 and that of 

radiation, which we write ss p+. and P,.d, respectively, evolve in terms of 

the following equations, 

dpg.= 
dt 

-3H& - CT,&, N-4 

dProd -= 
df -4HPr.d + c.&. (11) 

Then dynamical equations and a Hamiltonian constraint equation of the 

above system are given ar follows. 

A + 3H4i + f NV& - xv = 0, 

fi = -(;& + $%a,) + ; , 

H2 = ~b,. + had) - 2 . 

WI 

(13) 

(14) 

Defining a new time variable by 

r E 
/ 

v[~o(t)]14t 05) 
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and 

n(r) E In@(r), 

we obtain from (12-14), 

4: = +: z - fAl&‘, - 34:cJ + a ) 

0” = 24: 2 + $a’ - 2cr’ * + t, 

a’* = 

06) 

(17) 

(181 

(19) 

where we have set k = 0 for simplicity and prime denotes differentiation 

with respect to r. 

In order to examine the dynamics of the above system, we draw a die 

gram of (&,a’). To do this, let us first draw limes of 4’: = 0 and o” = 0, 

which are given by 

4: = 0 = +I& - ;(a’ + r,,?)]l - &(cz’ + 43’ + a, (20) 

a” = 0 = .gg - &44* + (2 - $qa’ * - g (21) 

As is seen above the inclusion of the viscosity term of the form of (9) implies 

that a’ is transported just to a’ + f X/3 in eq. (20). Since 6 is non-negative, 

only the region satisfying 

has physical significance. The resultant diagram is shown in Fig. 1. 

First let us consider the case f = O(no viscosity). As is seen in Fig. 1, 

there are two stationary points with CZ’ > 0. Solving (20) and (21) with 



f = 0, we 5nd them 

(4:, 4 = A.(&, dm , Jz ) B( 2, ;,. (23) 

The point B appears outside the physical region ss long as X < 2. On 

the other hand the point A0 is just on the 6 = 0 line and furthermore it 

is an attractor for all the initial conditions (&a’), provided X < 2. At 

Ae(&,, a!,) the scale factor behaves es 

a(t) = a&, ,+$,=; 
d) 

and 6 = 0. That is, power law expansion with p = 2/X2 realizes even 

in the initially radiation dominated case. Note that p = 2/X2 is larger 

than l/2 (the power index in the radiation dominated era) for X < 2. 

Radiation energy redshifts to 0 owing to this rapid expansion caused by 

the exponential potential. 

Next we consider the case with nonzero viscosity. The stationary point 

in the physical region, denoted by A,(&,, a;), is also an attractor for all 

the physical initial conditions (~$:,a’) in this case. At A/ the scale factor 

shows asymptotically power law behavior with its power index given by 

(25) 

which is obviously larger than 2/X2 as is seen in Fig. 1. At this point 6 

takes a finite value determined by (19). That is, if we take into account 

the effect of viscosity due to particle production, the power of in5ation 

increases and finite radiation energy density remains. Figure 2, in which 
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X = 1, shows an example of the dependence of pf and 6 on the viscosity 

strength f. As is seen in Fig. 2 the power index increases prominently lf 

f is larger than - 2. This feature is common to all the csses with X < 2, 

that is, the power becomes greater then - 10, if f > 0(3 - 10). 

There are several merits in the power law infiation with larger power 

index. First the duration time of infiation which is necessary to explain 

the homogeneity and 5atness of the present universe gets shorter. Second 

the spectrum of the density fluctuation after the in5ation becomes closer 

to Zel’dovich type, since the spectrum depends on p aa 

613 -+) cc k-‘/(‘+P) (26) 

at the time tH(k) when fluctuation with wave number k gets into the 

horizon[6]. It is desirable to have a power law inflation model of a large 

power with the help of the effect of viscosity. 

Hence it is important to examine if there is an adequate viscosity. In 

what follows, we investigate it briefly. As we mentioned earlier, we have no 

method to calculate C, properly. However, it has been evaluated by pertur- 

bative expansion under the assumption that 4.(t) varies adiabatically and 

shown to be related to the decay rate of 4 particle through the imaginary 

part of its propagator[l6]. We have performed similar calculation in the 

present case with an exponential potential and yielded at the lowest order 

C” m ;r, (27) 

where T stands for the decay rate of 4 particle. In order to evaluate I’, the 

coupling between 4 and external fields must be specified. 
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For the typical coupling of a scalar field which appears in supergravity 

theories with an exponential potential, we may consider Yukawa type cou- 

pling 4xdxi or exponential coupling c-““QxigiXi with m a parameter where 

xi represents a fermion field such as gaugino and coupling strength may be 

of order of unity. Then the decay rate I? for each case is written by 

r k Em2~*e-*mX4e~ 
4r 49 

respectively, for the lowest order of X where n stands for the number of 

decay modes, which can be - O(lQQ). Putting (28) to (27) we find the 

dimensionless parameter f aa 

Since we are dealing with a strongly coupled case, the formula (27), which 

has been evaluated perturbatively, does not give quantitatively correct vis- 

cosity. However, from (29), we may know qualitatively the effect of viscosity 

on the dynamics of the universe. 

For Yukawa coupling case, (29) posseesee the 8-e form as (9) so that 

the power index may increase prominently owing to viscosity. For the 

exponentially coupled case, the effective coupling strength decreases with 

time so that the initially large power index of in5ation eventually decreases 

to p = 2/x*. We may need more analysis to see whether we can 5nd a 

sufficient power law in5ation for X - 0( 1). 

Finally we mention the caee X > 2. In this case the stationary point B 

appears in the physical region ae an attractor instead of A,J or A/. At B the 
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universe is radiation dominated but 6 remains constant. Hence this gives a 

particle physics model of “Cosmology with decaying vacuum energy”[17], 

if the potential keeps the exponential form until the low energy stage. 

In summary we have introduced a viscosity term in the inflaton’s clsssi- 

cal equation of motion in order to take into account the energy dissipation 

due to particle creation caused by the time variation of 4.(t). We have 

found that the power of the inflation increases prominently if there is an 

adequate viscosity. Hence even in the theories with a rather steep exponen- 

tial potential such as some supergravity or superstring models, a sufficient 

power law inflation becomes possible, provided that it is coupled strongly 

with other fields. 
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Figure captions 

Fig. 1 Dynamical behavior of the universe in the diagram of (&,cE’) for 

the case X < 2. The power law solutions, Af(f # 0) and Ao(f = 0) 

are attractors as shown by solid and broken arrows, respectively. 

Fig. 2 Dependence of the power index p and 6 on the viscosity strength 

f for the case X = 1. 
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